Основные аспекты комплексного подхода к расширению применения аммиака в холодильной промышленности

20.01.2014

Как следует из ряда публикаций [1-3], выбор хладагента в холодильной технике является одной из ключевых проблем, так как применяя более совершенные рабочие вещества, можно достичь значительной экономии в затратах энергии на единицу производимого холода.

 Поиск альтернатив для хладагентов СО2 и фреона

После преодоления озонового кризиса конца XX века потепление климата, по-видимому, станет основной глобальной экологической проблемой XXI века, порожденной деятельностью человека [4]. Значительная часть созданных за последнее десятилетие альтернативных хладагентов решением Киотского протокола, принятого в 1997 году, наряду с СО2, являющегося основным виновником глобального потепления, были отнесены к категории «парниковых газов». Так, один килограмм R 134 a обладает таким же эффектом глобального потепления, как и 1300 килограммов СО2, хотя современные оценки показывают, что доля влияния выбросов фреонов на изменение климата в обозримом будущем составит не более 2 % от общего воздействия на него со стороны всех остальных парниковых газов. Это активизировало усилия по поиску других хладаген­тов, которые не вносили бы вклада в глобальное потепление при попадании в атмосферу.

 

Аммиачная холодильная установка компании Frigopol

 

Производители хладагентов не скрывают [5] что новые, продвигаемые сегодня на рынок хладагенты играют роль переходных, им на смену придут другие, возможно чуть лучше, но никто не гарантирует, что они надолго задержатся в холодильной промышленности. Когда международным сообществом будут осознаны эти проблемы, можно ожидать сильного давления на промышленность с целью сокращения выбросов парниковых газов. В связи с этим интерес специалистов привлекают возможности более широкого применения универсальных природных веществ, таких как аммиак, углеводороды, диоксид углерода и т.д.

 

Применение природных рабочих хладагентов должно решать не только экологические проблемы, но и повышать уровень энергоэффективности холодильных машин и тепловых насосов.

 

Применение аммиака в промышленном хладоснабжении

Особого внимания требует расширение применения аммиака. Аммиак по срав­нению с углеводородами менее опасен. За прошедшее столетие отношение к аммиаку, как хладагенту, менялось от полного приятия до резкого отторжения, связанного с за­полнением рынка хладагентов ХФУ и ГФУ, которые первоначально рассматривались как панацея, обещающая полное вытеснение МНз из холодильной техники. К счастью, этого не произошло. Аммиак, открытый 255 лет назад, с 1859 года применяется как холодильный агент, сначала в абсорбционных машинах, а с 1876 года - в компрессионных. При нулевых потенциалах разрушение озона и глобального Потепления аммиак не вызывает, термодинамически эффективен и абсолютно чист экологически.

 

Холодильная станция

 

Энергетические показатели АХУ

Энергетиче­ские показатели аммиачных холодильных машин и установок высоки: с энергетической точки зрения альтернативы аммиаку нет. Кроме того, аммиак обладает характерным запахом, который позволяет органолептически почти мгновенно определять его утечку. Аммиак легче воздуха и при утечке поднимается в воздух, уменьшая опасность отравления. К сожалению, зачастую эти достоинства аммиака относят к его существенным недостаткам. Действительно, аммиак теоретически взрывоопасен при объемном содер­жании в воздухе от 15 до 28 %, однако, случаи взрыва воздушно-аммиачной смеси в практической деятельности настолько редки, что их можно отнести к разряду легенд многолетней давности, когда в холодильной технике отсутствовала надежная автоматика, а нарушение режимов эксплуатации такой техники приводило к гидроударам и, как следствие последних, - взрывам. В жизнедеятельности человека известно множест­во случаев взрыва бытового газа, приводящих к трагическим последствиям, но никому и в голову не приходит запретить газоснабжение квартир и домов.

 

Свойства аммиака в холодильных машинах

Следует обратить внимание и на то, что мгновенная разгерметизация аммиачной холодильной установки (АХУ) не приведет к моментальному выбросу аммиака в атмосферу. Выйдет только паровая фаза, которая составляет незначительную часть от общего содержания аммиака в системе. Остальной жидкий аммиак будет медленно выкипать. Аммиак не текуч в той степени, которая свойственна другим хладагентам, не взаимодействует с черным металлом, а, следовательно, все аммиачное оборудование дешево, в отличие от фреонового, для которого используют в основном цветные металлы. Отрицательные свойства аммиака проявляются только при большом его количестве (несколько тонн) в системе и при условиях, когда могут создаться критические концентрации (до 50-60 грамм на один киловатт производимого холода). В традиционной насосно-циркуляционной системе заправка аммиака составляет около 3 кг на 1 кВт холода. Кроме того, современные сред­ства автоматизации позволяют создавать высоконадежные холодильные комплексы.

 

Сегодня это достаточно легко решается путем перевода крупных холодильных объектов на аммиачные установки, содержащие минимальное количество аммиака и оснащением аммиачной холодильной техники современными высоконадежными средствами автоматизации.

 

Это привело к расширению области применения аммиака за рубежом, в частно­сти, к его использованию в системах кондиционирования и холодоснабжения супермаркетов. При этом были приняты меры к снижению опасности выбросов NH3 и в первую очередь к уменьшению количества заправляемого хладагента. Уменьшение количества аммиака при сохранении заданной холодопроизводительности возможно при принятии следующих мер:

  • замена систем непосредственного кипения аммиака на системы с промежуточным хладоносителем;
  • использование ХМ с малоемкими тешюобменными аппаратами для охлаждения промежуточных хладоносителей;
  • применение новых хладоносителей, нейтральных к металлам, экологически безопасных;
  • оборудование выпускаемых холодильных машин устройствами и средствами автоматизации, позволяющими локализовать аммиак в случае разгерметизации холодильной машины.

 Способы перевооружения аммиачных холодильных установок (АХУ)

Разработчики холодильного аммиачного оборудования предлагают несколько путей перевооружения холодильных установок.

 1. Первый путь пригоден для крупных АХУ, расположенных в городах вблизи жилых массивов. Это возврат к системе с промежуточным хладоносителем, где недостат­ки подобных систем охлаждения на современном витке развития технологий исключа­ются применением нового теплообменного оборудования, приборов автоматизации, арматуры, материалов. Рекомендуется применять блочные малоемкие холодильные аг­регаты с дозированной заправкой МНз, в которых в качестве испарителей и конденсаторов применяется высокоэффективная аппаратура пластинчатого типа, в качестве хладоносителей – некорродирующие растворы, а в холодильных камерах батарейные сис­темы охлаждения заменять малопоточными воздухоохладителями. Аммиачное оборудование в данном случае может располагаться как в традиционных центральных машинных отделениях, так и в блочных машинных отделениях контейнерного типа, оборудованных устройствами для полного поглощения аммиака в случае разгерметизации. При этом количество аммиака обычно не превышает 100-150 грамм на 1 кВт холодо производительности.

 

2. Второй путь модернизации и усовершенствования крупных АХУ, располагающихся в промзонах, вдали от жилых массивов и общественных объектов, заключается в сохранении насосно-циркуляционных систем с непосредственным кипением аммиака, но с заменой аммиакоемких батарейных систем охлаждения холодильных камер на со временные малоемкие воздухоохладители с использованием в схемах пластинчатых или испарительных конденсаторов. Этот путь эффективен для предприятий с большим числом разнотемпературных потребителей холода и обеспечивает снижение аммиако-емкости систем охлаждения почти на порядок.

 

3. Третий путь является весьма перспективным, заключается в разработке агрегатированных блочных аммиачных установок непосредственного кипения аммиака по типу фреоновых, так называемых сплит-систем. Холодильные машины с небольшим количеством NH3 размещаются в специальных герметичных контейнерных блоках, а аммиак в случае разгерметизации полностью поглощается нейтрализаторами, не попадая в окружающую среду. Подобные аммиачные установки уже в настоящее время широко применяются в Японии и США.

 

Литература

1. Железний В.П., Хлiева О.Я., Биковець Н.П. Po6oта холодильних установок // Холод. - 2004. - №3. - С. 22-25.

2.B.C., Афонский В.Л. Основные аспекты комплексного подхода к расширению применения аммиачного оборудования в холодильной промышленности // Холодильная техника. - 2001. - №7. - С. 13-15.

3.Перелыптейн И.И., Парушин Е.Б. Термодинамические и теплофизические свойства рабочих веществ холодильных машин и тепловых насосов.- М.: Легкая и пищевая промышленность, 1984. - 232 с.

4. Маляренко В.А., Варламов Г.Б., Любчик Г.Н. и др. Энергетические установки и окружающая среда.- Харьков: ХГАГХ, 2002. - 398 с.

5. Калинь И.М., Васютин В.А., Пустовалов СБ. Условия эффективного применения диоксида углерода в качестве рабочего вещества тепловых насосов // Холодильная техника. - 2003. - №7. - С. 8-12.

Заказать обратный звонок