Схемы узлов холодильных установок

25.04.2016

Схема холодильной установки – это упрощенное изображение холодильной системы (реальной или проектируемой), позволяющее оценить количество элементов и их взаимное расположение, благодаря которым осуществляется стабильная и безопасная работа агрегатов. Из-за большого числа объектов охлаждения, часто располагающихся далеко от машинного отделения, сложной системы трубопроводов, использования токсичных хладагентов и других факторов обслуживание промышленных холодильных установок значительно усложняется. Грамотное проектирование холодильных установок позволяет поддерживать заданный температурный режим в охлаждаемых объектах, дает возможность изменять условия работы отдельных агрегатов и осуществлять их ремонт в случае различных неполадок.

 

Наглядная и простая схема узлов холодильных установок обеспечивает безопасность обслуживающего персонала и долговечность используемого оборудования, способствует быстрой эффективной работе с минимальным количеством ошибок. В случае перемены тепловых нагрузок эффективная система холодильной установки должна быть подготовлена к полной или частичной автоматизации. В хорошо продуманных схемах минимизируется количество циркулирующего хладагента, необходимого для интенсивной теплоотдачи поверхностей охлаждающих приборов; также немаловажно обеспечить функционирующую систему удаления вредных примесей (воздуха, грязи, масла, влаги, инея).

 

В холодильных складах, на предприятиях разных отраслей промышленности, на молокозаводах и пивзаводах – схема любой холодильной установки состоит из постоянных узлов, отличающихся специфическими особенностями.

 

Узел подключения компрессоров в схемах холодильных установок

Схемы узла подключения компрессоров различаются количеством единиц подключаемых аппаратов холодильных установок и ступеней сжатия компрессоров, а также количеством рабочих температур кипения.

 

Нагнетательные и всасывающие магистрали часто объединяют в общие коллекторы в системах, в которых несколько компрессоров работают с одной температурой испарения; таким образом, достигается возможность взаимного резервирования компрессорного оборудования и быстрой замены одного из агрегатов при поломке. При различных температурах испарения также возможен вывод магистралей в общий коллектор: давление нагнетания не зависит от температуры испарения, а для всасывающих магистралей общий коллектор разделяют на участки с помощью запорной арматуры.

 

 

Но в общих случаях если температуры кипения у компрессоров разные, то испарительная система соединяется со своей группой компрессоров с помощью отдельных всасывающих трубопроводов и отделителей жидкости, количество которых равняется количеству рабочих температур кипения. На всасывающих трубопроводах располагаются вентили для переключения компрессоров на разные температуры кипения. Также всасывающие магистрали компрессора оснащаются грязеуловителями для очистки пара хладагента от механических загрязнений (в некоторых схемах они встраиваются во всасывающий коллектор, расположенный прямо на компрессоре).

Нагнетательные магистрали всех компрессоров, вне зависимости от того, на какую они работают испарительную систему, объединяются в общую нагнетательную магистраль, которая идет к общему конденсаторному узлу. Для защиты оборудования от гидравлического удара и «влажного хода» необходимо соблюдать требования при подключении агрегатов:

  •  каждая всасывающая магистраль (в зависимости от количества температур кипения) должна оснащаться отделителем жидкости;
  •  в схемах с верхней разводкой трубопроводов всасывающие и нагнетательные трубопроводы соединяются с коллекторами сверху, чтобы исключить скопление масла и жидкого хладагента;
  •  независимо от разводки в нижних точках трубопроводов должны располагаться дренажные вентили для выпуска скопившейся жидкости после длительной остановки;
  •  необходимо предусматривать небольшой уклон всасывающих магистралей в сторону отделителей жидкости или циркуляционных ресиверов.

 

Узел конденсатора и регулирующей станции в схемах холодильных установок

Конденсаторный узел проектируется для сбора жидкого хладагента и конденсации его паров, для удаления воздуха и других неконденсирующихся газов, а также масла из систем аммиачных холодильных установок. Пар хладагента поступает от маслоотделителей в верхнюю зону конденсаторных установок, а сконденсированная жидкость стекает в линейные ресиверы, которые для обеспечения свободного слива жидкости устанавливаются ниже конденсаторов. Ресивер и конденсатор соединены друг с другом уравнительными линиями и оснащены сдвоенными предохранительными клапанами, присоединенными через трехходовые вентили.

Основные функции линейного ресивера:

  • сбор конденсата;
  • равномерная подача хладагента благодаря его накапливанию при изменении тепловой нагрузки;
  • создание гидравлического затвора, препятствующего перетоку паров жидкого хладагента в испарительную систему со стороны нагнетания;
  • запас хладагента на случай его утечек из системы;
  • вместилище для хладагента во время ремонта холодильной системы.

 

Стабильность уровня жидкости в ресивере служит показателем хорошо функционирующей холодильной системы, в которой поддерживается баланс между количеством жидкости в испарительной системе, тепловой нагрузкой и производительностью компрессора. Изменение уровня в линейном ресивере, сигнализирующее об изменении ее количества в испарительной системе, осуществляется персоналом визуально или производится автоматически с холодильного щита управления.

 

Узел испарительной системы непосредственного охлаждения в схемах холодильных установок

Сложность выбора наилучшей схемы испарительного узла состоит в том, что в условиях переменных тепловых нагрузок он должен обеспечивать безопасный «сухой ход» компрессора, одновременно способствуя заполняемости испарителя жидким хладагентом для интенсивного теплообмена. Проектирование узла испарительной системы может осуществляться исходя из способа подачи хладагента в испарительную систему: безнасосные схемы холодильных установок объединяют варианты поступления холодильного агента под действием разности давлений кипения и конденсации, а также под напором столба жидкости; в насосных схемах подача (нижняя или верхняя) хладагента осуществляется насосом.

 

Схема холодильной установки может быть спроектирована исходя из одного варианта, а может сочетать несколько способов подачи хладагента в зависимости от условий функционирования оборудования. Так безнасосные прямоточные схемы без отделителя жидкости используются в небольших фреоновых холодильных установках, а безнасосные схемы с нижним расположением отделителя жидкости характерны для сложных аммиачных установок с несколькими объектами охлаждения. Насосные схемы непосредственного охлаждения проектируются с двумя циркуляционными контурами холодильного агента с разной кратностью циркуляции; циркуляционный ресивер в данном варианте построения холодильной установки выполняет функцию отделителя жидкости. 

 

Также рекомендуем статьи:

Техническое перевооружение аммичной холодильной установки

Монтаж систем холодоснабжения

Принцип работы маслоотделителя холодильной установки

Заказать обратный звонок